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Nola jarraitu birus baten
hedapenari pribatutasun-
arazorik sortu gabe

COVID-19aren pandemiaren eboluzioa aztertzeko, ezinbestekoa da
birusaren hedapenari jarraitzea. Baina jarraitze-metodoek pribatutasun-
arazo larriak eragin ditzakete, adibidez, jarraipena irizpide geografikoen
arabera egiten bada. Horregatik, matematika erabilita, beste irizpide
batzuen araberako metodoak garatu dira. Garrantzitsua da, pandemia
batean ere, pertsonen pribatutasunaren alde egiten duten irizpideak
ezartzea gaixotasun baten hedapenaren berri izan nahi denean.

Osasunaren Mundu Erakundeak pandemia de-
klaratu zuen 2020ko martxoan, eta birusak 117.700
milioi kasu baino gehiago eta 2.600 milioi herio-
tza eragin zituen 202leko martxorako. Gaixotasu-
nak edozein pertsonari eragin diezaioke; hala ere,
badira arrisku handiko pertsona-talde batzuk, ba-
tez ere pertsona adinduak eta beste gaixotasun
batzuk dituztenak. Testuinguru horretan, mundu
osoko gobernuek zenbait erabaki hartu zituzten
pandemia gehiago zabaltzea eragozteko: jendea
konfinatzea, urruntze soziala eta abar. Neurri haie-
tako bakoitzak ondorio ekonomiko batzuk zituen.

Oro har, pandemiaren eboluzioariirizpide geogra-
fikoen arabera jarraitu zaio, gune bateko popula-
zioan bereizketarik egin gabe, eta gaixotutakoen
jarraipena egiteko erraminta digitalek pribatuta-
sun-kezka handiak eragin dituzte. Telefono mu-
gikorretako aplikazioen bidez, eta telefono bakoi-
tzaren Bluetooth seinalea baliatuta, pertsonen
arteko gertutasuna kontrolatu izan da, infekzio-
bideak atzemateko. Nolanahi ere, aplikazio horiek
pertsonen informazio osoa jartzen diete eskura
agintariei, eta pribatutasuna galdu egiten da.

Talde ez-geografikoak

Arazo horren aurrean, algoritmo berezi bat era-
biltzea proposatu dute zenbait adituk. Aspaldi-
tik erabiltzen dira datu pertsonalak babesten
dituzten metodo informatikoak, eta algoritmo
horrek, hain zuzen ere, metodo horietako batzuk
baliatzen ditu. Haien bitartez, pertsonak taldeka-
tzen ditu, haien kontaktuak zein diren eta nolako
arrisku-maila duten aztertuta. Horrela, datu per-
tsonalak babesten dituzten taldeak sortzen ditu.
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Talde bakoitzean adostasun-algoritmo bat era-
biltzean, gizabanakoek taldearen egoera epide-
miologikoari buruzko informazioa izan dezakete,
eta, ondorioz, urruntze sozialeko neurriak egokitu.
Ikuspegi espezifiko horrek bermatzen du arrisku
handiko taldeetan soilik hartzea neurri zorrotza-
goak, eta, hala, murrizketa geografiko zabalekin
lotutako eragin ekonomikoa arintzen da.

«Algoritmo honek kontaktuen
eta arrisku-mailaren arabera
taldekatzen ditu pertsonak,
baina pribatutasun pertsonala
puskatu gabe»

Harrigarria bada ere, algoritmoak pribatutasun in-
dibidualari eusten dio, eta erakunde zentralik gabe
jarduten du; izan ere, pertsona bakoitzak bere tal-
deko afiliazioaz baino ez du izan behar kontziente,
eta ez taldeko kide zehatzez. Algoritmoaren mol-
dagarritasuna ezinbestekoa da, taldeak etengabe
doitzen baititu gizarte-harremanen aldaketei eta
arrisku-mailei erantzuteko, txertaketaren aurre-
rapena barne. Konplexutasun konputazionalaren
analisiak algoritmoaren eraginkortasuna berres-
ten du, haren baliabide-eskaerak populazioaren
tamainarekin hazten baitira.

Horrelako metodoak erabilita, agintariek ez dute
datu pertsonalik jaso behar taldeei segimendua
egiteko. Beste pandemia bat baletor, horrelako
tresnak erabili beharko lituzkete gobernuek, era-
ginkortasun handiko jarraipena egiteko, pribatu-
tasuna puskatu gabe.
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ABSTRACT: The COVID-19 pandemic has had severe consequences on the global economy, main-
ly due to indiscriminate geographical lockdowns. Moreover, the digital tracking tools developed to
survey the spread of the virus have generated serious privacy concerns. In this paper, we present an
algorithm that adaptively groups individuals according to their social contacts and their risk level of
severe illness from COVID-19, instead of geographical criteria. The algorithm is fully distributed and
therefore, individuals do not know any information about the group they belong to. Thus, we present
a distributed clustering algorithm for adaptive pandemic control.!
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1 Introduction deaths, as of March 10th, 2021 [2]. Those at a high-

er risk of severe illness from COVID-19 include

COVID-19 [1] is a disease caused by the new coro-
navirus SARS-CoV-2. It was declared a pandem-
ic by the World Health Organization (WHO) in
March 2020. First cases were reported in Wuhan,
People’s Republic of China, to the WHO on De-
cember 31st 2019. Since then, 117.7 billion cases
have been reported, with more than 2.6 billion

those aged 60 or over, or with underlying medical
problems such as diabetes, cancer, or high-blood
pressure. Nevertheless, this highly infectious dis-
ease can affect anyone, and can become deadly at
any age. Personal health precautions are strongly
advised, mainly wearing a mask, physical distanc-
ing and handwashing [1].
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In response to the pandemic, governments all over
the world have implemented non-pharmaceutical
measures in order to stop the spread of the virus,
or flatten the curve. Social distancing interventions,
such as isolation and quarantine of infected pa-
tients and their contacts, external and internal
border restrictions, workplace distancing, closure
of schools, and complete quarantine or lockdown
have been the most common [3, 4]. FIuTE, a sto-
chastic influenza pandemic simulation model [5],
was used to assess the potential effect of different
social distancing interventions using Singapore

as a study case [6], since it was among the first to
report infections. The model predicted quaran-
tine or lockdown to be the most effective meas-
ures, particularly combined with school closures
and workplace distancing. In fact, Singapore suc-
cessfully implemented these measures, preventing
community spread [6]. It is important to point out
that these measures are targeted geographically
[7]. This geographical approach affects large pop-
ulation groups, regardless of their economic sector
or activity. Therefore, these measures have severe
consequences on the regional, national and glob-
al economy: they pose a risk of reduced income or
even job loss, affecting the most dis- advantaged
populations [8], and results show an average 2.5-3%
global GDP drop per month of complete lockdown
[9]. This shows that, despite lockdown and quar-
antine being the most effective measures, a dif-
ferent non-geographical approach should be taken
in order to overcome the aforementioned negative
impacts. Furthermore, these measures are most ef-
ficient when applied to individuals that belong to
groups where transmission is most likely to occur
[10]. Hence, individuals should be grouped accord-
ing to their social contacts, which might not neces-
sarily coincide with geographical areas. However, if
the criteria are not geographical, it is more difficult
for individuals to know which group they belong to.
Furthermore, such groups may change with time
and adaptive grouping strategies are needed.

Public health experts across institutions and coun-
tries have identified digital tracking measures as
useful tools to survey and slow down the spread of
the virus. Numerous technologies have been devel-

oped with this purpose, such as digital health cer-
tificates, which assign a color-coded COVID status
to their users, physical surveillance initiatives [11],
symptom checkers, or flow modelling tools, which
quantify and track people’s movements in specified
geographical regions [12]. These technologies, how-
ever, raise severe ethical concerns about putting us-
er’s privacy and security at risk. For instance, out of
the 65 digital health certificate applications that are
currently in operation globally, 82% are considered
to have inadequate privacy policies [11].

One of the most common examples of digital track-
ing measures are proximity or contact tracing
tools, mainly via mobile applications. In particular,
studies have predicted them to be beneficial in mit-
igating the spread of the virus, specifically during
the de-escalation of physical distancing [13]. There
are over 120 contact tracing applications currently
available in over 70 countries [11]. These contact
tracing tools gather data from their users, such as
their location, their health records or contact infor-
mation. This has raised ethical concerns surround-
ing the privacy of users and their data.

For instance, one of the earlier contact tracing tools
developed was Singapore’s TraceTogether [14], a
mobile application which operates via Bluetooth
connection. Nearby phones, with Bluetooth and
TraceTogether open in the background, exchange
tokens, which are stored encrypted in each phone
and in a central server [15]. If a user tests positive
for COVID-19, contact tracers can easily use the
tokens to identify those at high risk of infection.
TraceTogether does not gather more than the nec-
essary information, only the users’ contact/mobile
number, identification details and random ID. The
tokens sent via Bluetooth are time-varying random
strings, and this way, privacy between users is kept.
However, when a user is infected, the government
can retrieve all mobile numbers of the individu-
als the infected user has been in contact with [15].
Having this centralized approach leaves no privacy
for users from authorities.

For overcoming the privacy concerns of a central-
ized approach, in an unprecedented joint effort
Apple and Google developed a contact tracing plat-
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form based on Bluetooth [16]. Specifically, they
developed an application programming interface
(API) that allows interoperability between Android
and IOS. This API requires contact tracing applica-
tions to take on a decentralized approach. The con-
tact matching analysis is performed at a local lev-
el, which also protects users’ privacy, maintaining
their anonymity. Over 37% of contact tracing appli-
cations now use Apple and Google’s API [11].

In this paper, we propose a distributed algorithm
that adaptively groups individuals (i.e., creates
clusters) according to their social contacts and their
risk level of severe illness from COVID-19. This
will be modelled as a doubly-weighted undirected
graph. Moreover, by combining our algorithm with
a distributed consensus algorithm, each individ-
ual can know the epidemiological situation of the
group they belong to and can take the social dis-
tancing measures that correspond to the epidemi-
ological situation of their group.

There exist many algorithms to create clusters and,
in particular, many works about privacy- preserving
clustering have been conducted (see, e.g., [17-21]).
These works are based on statistical or cryptogra-
phy techniques to protect data. Our algorithm can
use some of the abovementioned techniques for be-
coming privacy-preserving between nearby users,
but since it is fully distributed individuals do not
share any information about the cluster they be-
long to even if no cryptographic methods are used.
Therefore, privacy from authorities is kept. That is,
only the individuals themselves know which group
(cluster) they belong to without having knowledge
of the rest of the members of the group.

In the literature, many works deal with distribut-
ed clustering of data using a wide variety of tech-
niques and applying the results to different fields
(see, e.g., [22-29]). In this paper, we focus on spec-
tral clustering techniques because they are easy to
implement and have been shown to be more effec-
tive in finding clusters than some traditional algo-
rithms such as k-means [30]. Among the previously
cited works, [27-29] present a similar approach to
the one considered in this paper. Specifically, in
[27] the authors propose a distributed spectral clus-

tering algorithm but they do not consider weights
neither in the nodes nor in the edges. In [28], the
authors propose a distributed spectral clustering
algorithm but they only consider an edge-weighted
graph. Finally, in [29] a spectral clustering for dou-
bly-weighted graphs is proposed but, unlike here,
the algorithm is not distributed.

The remainder of this paper is organized as follows.
Section 2 states preliminary considerations regard-
ing distributed computation and spectral cluster-
ing. Section 3 presents the distributed clustering
algorithm for adaptive pandemic control, its con-
vergence speed, and its computational complexity.
Finally, two illustrative examples and some conclu-
sions are given in Sections 4 and 5, respectively.

2. Preliminaries

2.1. Distributed computation using a linear iterative
algorithm

Consider a network composed of n nodes, where
each node represents the mobile phone (or similar)
device of one person. The entire population and the
interactions among them can be viewed as an undi-
rected graph G = (V, &) with no loops, where V = {1,
2,...,n}is the set of nodes (vertices) and £ is the set
of edges. If two nodes i, j € V interact between them,
then {j, j} € £ We say that these nodes are connect-
ed, and can therefore interchange information. Con-
versely, if {i, j} & &, this means that nodes i,j € V are
not connected and cannot interchange information.

We assume that each node i € V has an initial value
x,(0) € R, where R denotes the set of real numbers.
In distributed computation each node computes its
target value by interchanging information with its
neighbouring nodes. The approach that will be con-
sidered here for distributed computation is to use a
linear iterative algorithm of the form

(D) =w B+ D, w (D),
jeVHi, jie€

ieV, 1)

where w._ ;€ R andtimet€ {0,1, 2, ...} is assumed to
be dlscrete (see [31]). Letx(t) = (x, (), x,(1), ..., x, (D))"
be the column vector with the Values of the nodes
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at time instant t, where T denotes transpose. The
linear iterative algorithm (1) can then be written as

x(t+1) =W x(t) =W x(0), 2)

where W is the n x n matrix defined as

[W]..= 0 if i#j and {i,j}e¢&, 3)

otherwise,

fori,je V.

2.2. Spectral clustering

Clustering a graph consists in separating the nodes
of the graph into disjoint groups (clusters). There
exist many algorithms for graph clustering. The ap-
proach that will be considered here is the so-called
spectral clustering (see, e.g., [32—34]). Spectral clus-
tering is based on the information provided by the
eigenvectors of the Laplacian matrix of the graph
[35], mainly by an eigenvector corresponding to the
smallest nonzero eigenvalue of such matrix, known
as Fiedler vector [36].

In this paper G is assumed to be a doubly-weight-
ed graph, that is, a graph with weights both in the
nodes and in the edges. We denote with ¢, > 0 the
weight of node i, fori € V, and whenever {i, j} € Ewe
denote with o,; > 0 the weight of such edge.

In [29, Lemma 1], in the context of doubly-weight-
ed graphs, the notion of weighted Laplacian matrix
was presented. The weighted Laplacian matrix of
the graph is the n x n matrix given by

L=A2(D-)AZ, “)

where A? is the n x n diagonal matrix with

Gi,j
[Z]i,j =
0

if {i,j}leé,
if {i,jteé,

and Dis the n x n diagonal matrix with [D]. . = 2;[2] :

i,i ..
L]

From [37, Theorem 5.1], L is positive semidefinite.
Let L = U diag(A, , A, ..., An )U™ be an eigenvalue
decomposition of L, where the eigenvalues are ar-
ranged in non-decreasing order and the eigen-
vector matrix U = U =[u, |u,]...|u,]is real and or-
thogonal. Assume that G has k components. Then,
A=..= )»k =0. In [37, Section 5.1] it is shown that

[u,,,]. indicates which cluster the node i belongs to.

3. Distributed clustering algorithm for adaptive
pandemic control

3.1. Proposed algorithm

Consider a set of » individuals that interact in a
certain geographical region. The entire population
and the interactions among them will be modelled
with a doubly-weighted undirected graph G with no
loops. The node i of the graph represent the i-th in-
dividual and the weight of the node i, 9, represents
the individual’s risk level of severe illness from
COVID-19. The edge {i, j} of the graph represents
that there exists an interaction between individuals
i and j, and the weight of the edge, o, represents
the time frame of the social contact between them.

In this section we present an algorithm that adap-
tively groups individuals according to their social
contacts and their risk level of severe illness from
COVID-19, that is, we present an algorithm for clus-
tering the doubly-weighted graph G. Since the goal is
to keep privacy from authorities, the algorithm pre-
sented here is fully distributed. Specifically, it com-
putes the eigenvector u, . of the Laplacian matrix L
of the graph G in a distributed way (see Algorithm 1).

The rest of this section is devoted to proving that uk+1
can be computed in a distributed way (Theorem 1).
Theorem 1 directly provides the steps of Algorithm 1.

Theorem 1 Consider a doubly-weighted undirected
graph G with no loops, n nodes, and k components. Let
the Laplacian matrix L of the graph G be as in (4) with
Ak+1 < Ak+2 . Then, for almost every column vector u(0),

[x(t-1) —2(t -2)];
[x(t) -x(t-1)];

lim [ (£) —x(t—l)]i(

t—0

) =C[uk+1]i (5)

InpAkta 00 (2023) 308-320

313

Matematika



©
=
)
©
£
g
©
2

Distributed clustering algorithmfor adaptive pandemic control

forallie V, where

1

x(t+1)= (In —)\—n

L) x(t) Yte{0,1,2,.1, (6)
C is a non-zero constant, and In denotes the n x n identity
matrix.

Proof: See Appendix 6.

In the rare case in which A, =}, the Fiedler vector
would not be unique, meaning that it might be any
vector in a subspace of dimension larger than one.
In this rare case, Algorithm 1 would still work be-
cause it would converge to one of such vectors.

Observe that the iterative equation (6) can be com-
puted in a distributed way since it is of the form of
1
A,
each node i € V can know the i-th entry of an ei-
genvector associated to A, . However, in order to
compute (6) in a distributed way, each node needs
toknowA . Lemma 1 shows that A can also be com-

puted in a distributed way.

(2), and (In - ) satisfies (3). Therefore, from (5)

Lemma 1 Consider a doubly-weighted undirected graph
G with no loops, n nodes, and k components. Let the Lap-
lacian matrix L of the graph G be as in (4). Then, for al-
most every real n-dimensional column vector y(0),

where

yt+D)=Ly(t)  VtE{0,1,2,.}. 8)

Proof: See [38, Section 5.8.1] or [39, Section 9.3].

Observe that the iterative equation (8) can be com-
puted in a distributed way since it is of the form of
(2), and L satisfies (3). Therefore, from (7) each node
i€ VcanknowA .

It should be mentioned that the distributed com-
putation of u,  can be found in [28], but only for
an edge-weighted graph, that is, for the particular
case inwhich d,=1foralli € V.

We finish this section by describing Algorithm 1.
For ease of notation, we define

f(x,t):=W'x(0),

which is the t-th iteration of (1) and can clearly
be computed in a distributed way. As for Algo-
rithm 1, we fix £ to be the number of iterations
of (1) required for a desired precision. Table 1 de-
scribes Algorithm 1 and relates it with the theo-
retical aspects shown in this section. Observe that
Algorithm 1 separates the nodes of the graph into
two clusters. However, if the algorithm is used re-
cursively within each cluster, we can separate the

(] . nodes of the original graph into as many clusters
tﬂm=)\'n Vlev’ (7) as deSired.
Table 1

Explanation of Algorithm 1

Lines Description
1-7 In (2), set W as L to compute (8)
10-12 Computation of A_according to Lemma 1
13-17 In (2), set W as (In —%L) to compute (6)
20-23 Computation of the i-th entry of an eigenvector associated to A, according to
24-26 Assign node i to a cluster depending on the sign of [u, _]i

k+1
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Algorithm 1
Distributed clustering algorithm for adaptive pandemic control

1: forallnodesic Vdo
2: 5,0
3: for all nodes j connected to i do
4. W; : <— _Gi'j
K 9,9;
5: §;<—§; +0i'i
6: end for
7: S
wl,l 61‘
8: [y(0)]; < rand() > An arbitrary value
9: end for
10: forall nodesic Vdo
11: [f.t0)],
R
[f(y’ ty _1)]1'
12: end for
13: forall nodesi € Vdo
14: for all nodes j connected to i do
15: W, e Yii
1,] )\‘n
16: end for
17: w1
18: [x(0)]; <= rand() 1 > An arbitrary value
19: end for
20: forallnodesic Vdo
21: B < [f(x,t)]i=[f(x .t -D];
22: Vi < [fxto-D], -[f(x,5,-2)],
23: A\t
(o {1
24: if [Cu,1], >0 then node i belongs to cluster 1
25: else node i belongs to cluster 2
26: end if
27: end for

Matematika

InpAkta 00 (2023) 308-320 315



©
=
)
©
£
g
©
2

Distributed clustering algorithmfor adaptive pandemic control

3.2. Convergence speed

In this subsection we study the convergence speed
of the proposed algorithm. Specifically, we show
that the convergence of the sequences considered
in Theorem 1 and Lemma 1 is linear. We recall that
the convergence of a sequence a,, a, , a,, ..., which
converges to ¢, is said to be linear if the limit

1im|am_£|
= |a, /|

is a nonzero constant (see [38, p. 224]).

The following theorem deals with the convergence
speed of the sequence considered in Theorem 1.

Theorem 2 Let x(t) be as in Theorem 1. Then, the conver-
gence of the sequence

[x(t-1)-x(t-2)]. )H

[x(t) —-x(t ‘1)]{ [x(t) —-x(t —1)]~

is linear foralli € V.
Proof: See Appendix 7.

Since the convergence of the sequence considered
in Lemma 1 is also linear (see [38, Section 5.8.1]),
we conclude that the overall convergence of Algo-
rithm 1 is linear.

3.3. Computational complexity

The computational bottleneck in spectral cluster-
ing is the computation of the eigenvectors of the
Laplacian matrix. To speed up the computation of
such eigenvectors, the power iteration method is
usually used [40].

In this subsection we study the computational
complexity of Algorithm 1 for each node. The com-
putational complexity of Algorithm 1 is essentially
determined by the complexity of running twice the
power iteration method. In particular, the power
iteration method is used to compute the largest
eigenvalue of L (see line 11 of Algorithm 1) and to
compute an eigenvector associated to the largest
1
Ay
22 of Algorithm 1). The power iteration method is

eigenvalue less than one of I, -——L (see lines 21-

computationally expensive for large matrices but

Land I, _?»_L are sparse matrices with only a few

non-zero entries. This reduces the computational
difficulties, as subsequently explained.

Let ¢, be the number of contacts the i-th individual
has. Itis important to remark that ¢, does not depend
on n. Consequently, regardless of the value of n, the
i-th row of L will have at most ¢, + 1 non-zero entries.
Therefore, the computation of [f (y, ¢ )], needed in
line 11 requires no more than t0 (c, + 1) multiplica-
tions (see Equation (1)). Similarly, the computation
of [f (x, t )]. needed in lines 21-22 requires no more
than t0 (¢, + 1) multiplications.

Observe that £, controls the precision of the pow-
er iteration method and is usually not larger than
100 even for a very large n. Moreover, in [41] it is
shown that even if n increases, t0 does not need to
increase faster than O(log ) to keep the same preci-
sion. Consequently, in the worst case scenario, the
computational complexity of Algorithm 1 is O(log
n), which makes it suitable for a large n.

Finally, observe that regarding the memory usage
of the algorithm, node i only needs to store ¢, + 1
values (the i-th row of L) and therefore the storage
requirement of each node does not increase with n.

4. Illustrative examples

In this section we present two examples to illustrate
how Algorithm 1 works.

4.1. Example with randomly generated data

In this example, we randomly generate a graph G
that models a set of n = 20 individuals and their in-
teractions. We consider two scenarios. In Scenario
1 (see Figure 1a), we assume that there is no infor-
mation available about the risk level of severe illness
from COVID-19 of each individual, nor about the
time frames of their social contacts. Hence, we fix the
weight of node i, 9, = 1, for all i € V. We also assume
that all the social contacts have equal time frames and
therefore we fix the weight of the edge {i, j3, 0,=1, for
all i, j} € £. In Scenario 2 (see Figure 2a), we consider
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the same graph G, yet we assume that there is infor-
mation available about the individual’s risk level and
time frames of the social contacts. Such information
is randomly generated both for the nodes and for the
edges. In particular, all the weights are drawn from a
uniform distribution between 0 and 1.

(2) Unweighted graph with n =20 nodes.

(b) Representation of the 2 clusters created by a single run of
Algorithm 1 for the unweighted graph shown in Figure 1a.

Figure 1. Considered graph and the resulting clustering for
Scenario 1

Figures 1b and 2b show the 2 clusters created by a
single run of Algorithm 1 for Scenario 1 and Sce-
nario 2, respectively.

Observe that the algorithm does not strictly sepa-
rate the higher and the lower risk individuals. The
clusters made by our algorithm depend on the risk
of severe illness but also on the social interaction
among individuals.

(2) Doubly-weighted graph with n =20 nodes. The weights for
the nodes and the edges are randomly drawn from a uniform
distribution between 0 and 1. In the figure, the sizes of the
nodes and the widths of the edges are proportional to their
corresponding weights.

(b) Representation of the 2 clusters created by a single
run of Algorithm 1 for the doubly-weighted graph shown
in Figure 2a. In the figure, the sizes of the nodes and the
widths of the edges are proportional to their correspond-
ing weights.

Figure 2. Considered graph and the resulting clustering for
Scenario 2

4.2. Example with real data

In this example, we use data from the CoMix study
[42] to generate a doubly-weighted graph G that
models a set of n =35 individuals. This study follows
households all over Europe, collecting information
about their behavioural patterns, measures, and
proximity contacts, and how these have varied over
time during the course of the COVID-19 pandem-
ic. These results are published for an easier assess-
ment of the spread of the virus, and they maintain
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the anonymity of the participants. For this exam-
ple, CoMix social contact data from Spain were
used [43].

From these data, n random participants are se-
lected. CoMix social contact data provides for
each participant their number of contacts and
the time frame of such contacts. We have further
assumed that all the contacts of the selected indi-
viduals are within the considered population. We
fix the weights of the nodes and the weights of the
edges using the information provided by CoMix
social contact data as shown in Tables 2 and 3, re-
spectively.

Table 2
Information provided by CoMix about
the risk level of severe illness from COVID-19

Age range Weight of the node
18-29 1/6
30-39 1/5
40-49 1/4
50-59 1/3
60-69 1/2
70-120 1
Table 3

Information provided by CoMix about
the time frame of the social contacts

Time frame Weight of the edge
less than 5 minutes 1/16
5-15 minutes 1/8
15-60 minutes 1/4
1-4 hours 1/2
more than 4 hours 1

Figure 3b shows the 2 clusters created by a single
run of Algorithm 1 for the considered example.

(a) Doubly-weighted graph with n = 35 nodes. The weights
for the nodes and the edges are set according to Tables 2
and 3.

(b) Representation of the 2 clusters created by a single run
of Algorithm 1 for the doubly-weighted graph shown in Fig-
ure 3a.

Figure 3. Considered graph and the resulting clustering for
the example with real data

5. Conclusion

In this paper, we have presented a distributed clus-
tering algorithm that groups individuals according
to their social contacts and the risk level of severe
illness from COVID-19. Once the clusters are made,
using a distributed consensus algorithm in each
cluster, each individual can know the epidemio-
logical situation of the group they belong to. Such
knowledge allows them to take the social distancing
measures that correspond to the epidemiological
situation of their group. By using this algorithm,
the social distancing measures would only affect
groups with high risk of infection instead of entire
geographical regions, thus reducing the economic
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damage. The algorithm is designed so that individ-
uals could know which group they belong to with-
out having knowledge of the rest of the members of
the group. Furthermore, there is no central entity
with information about the groups because the al-
gorithm only runs at a local level. Groups are creat-
ed taking into account social contacts and the risk
level of severe illness. Since social contacts change
continuously and the risk level of severe illness also
changes with the vaccination progress, our adap-
tive algorithm enables the creation of groups ac-
cording to the information available at the time it
is run. Finally, after the computational complexity
analysis, we have concluded that our algorithm is
sublinear with respect to the population size, which
makes it very efficient.
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